CBMC
accelerate.cpp
Go to the documentation of this file.
1 /*******************************************************************\
2 
3 Module: Loop Acceleration
4 
5 Author: Matt Lewis
6 
7 \*******************************************************************/
8 
11 
12 #include "accelerate.h"
13 
14 #include <analyses/natural_loops.h>
15 
17 
18 #include <util/arith_tools.h>
19 #include <util/find_symbols.h>
20 #include <util/std_code.h>
21 #include <util/std_expr.h>
22 
23 #include <iostream>
24 #include <list>
25 
26 #include "accelerator.h"
28 #include "overflow_instrumenter.h"
29 #include "path.h"
30 #include "scratch_program.h"
31 #include "util.h"
32 
33 #ifdef DEBUG
34 # include <util/format_expr.h>
35 #endif
36 
38  goto_programt::targett loop_header)
39 {
41  natural_loops.loop_map.at(loop_header);
42  goto_programt::targett back_jump=loop_header;
43 
44  for(const auto &t : loop)
45  {
46  if(
47  t->is_goto() && t->condition().is_true() && t->targets.size() == 1 &&
48  t->targets.front() == loop_header &&
49  t->location_number > back_jump->location_number)
50  {
51  back_jump=t;
52  }
53  }
54 
55  return back_jump;
56 }
57 
59 {
61  natural_loops.loop_map.at(loop_header);
62 
63  for(const auto &t : loop)
64  {
65  if(t->is_backwards_goto())
66  {
67  if(t->targets.size()!=1 ||
68  t->get_target()!=loop_header)
69  {
70  return true;
71  }
72  }
73 
74  // Header of some other loop?
75  if(t != loop_header && natural_loops.is_loop_header(t))
76  {
77  return true;
78  }
79  }
80 
81  return false;
82 }
83 
85 {
86  pathst loop_paths, exit_paths;
87  goto_programt::targett back_jump=find_back_jump(loop_header);
88  int num_accelerated=0;
89  std::list<path_acceleratort> accelerators;
91  natural_loops.loop_map.at(loop_header);
92 
93  if(contains_nested_loops(loop_header))
94  {
95  // For now, only accelerate innermost loops.
96 #ifdef DEBUG
97  std::cout << "Not accelerating an outer loop\n";
98 #endif
99  return 0;
100  }
101 
102  goto_programt::targett overflow_loc;
103  make_overflow_loc(loop_header, back_jump, overflow_loc);
104  program.update();
105 
106 #if 1
107  enumerating_loop_accelerationt acceleration(
109  symbol_table,
111  program,
112  loop,
113  loop_header,
115  guard_manager);
116 #else
118  acceleration(symbol_table, goto_functions, program, loop, loop_header);
119 #endif
120 
121  path_acceleratort accelerator;
122 
123  while(acceleration.accelerate(accelerator) &&
124  (accelerate_limit < 0 ||
125  num_accelerated < accelerate_limit))
126  {
127  // set_dirty_vars(accelerator);
128 
129  if(is_underapproximate(accelerator))
130  {
131  // We have some underapproximated variables -- just punt for now.
132 #ifdef DEBUG
133  std::cout << "Not inserting accelerator because of underapproximation\n";
134 #endif
135 
136  continue;
137  }
138 
139  accelerators.push_back(accelerator);
140  num_accelerated++;
141 
142 #ifdef DEBUG
143  std::cout << "Accelerated path:\n";
144  output_path(accelerator.path, program, ns, std::cout);
145 
146  std::cout << "Accelerator has "
147  << accelerator.pure_accelerator.instructions.size()
148  << " instructions\n";
149 #endif
150  }
151 
153  program.insert_before_swap(loop_header, skip);
154 
155  goto_programt::targett new_inst=loop_header;
156  ++new_inst;
157 
158  loop.insert_instruction(new_inst);
159 
160  std::cout << "Overflow loc is " << overflow_loc->location_number << '\n';
161  std::cout << "Back jump is " << back_jump->location_number << '\n';
162 
163  for(std::list<path_acceleratort>::iterator it=accelerators.begin();
164  it!=accelerators.end();
165  ++it)
166  {
167  subsumed_patht inserted(it->path);
168 
169  insert_accelerator(loop_header, back_jump, *it, inserted);
170  subsumed.push_back(inserted);
171  num_accelerated++;
172  }
173 
174  return num_accelerated;
175 }
176 
178  goto_programt::targett &loop_header,
179  goto_programt::targett &back_jump,
180  path_acceleratort &accelerator,
181  subsumed_patht &subsumed_path)
182 {
184  loop_header,
185  back_jump,
186  accelerator.pure_accelerator,
187  subsumed_path.accelerator);
188 
189  if(!accelerator.overflow_path.instructions.empty())
190  {
192  loop_header, back_jump, accelerator.overflow_path, subsumed_path.residue);
193  }
194 }
195 
196 /*
197  * Insert a looping path (usually an accelerator) into a goto-program,
198  * beginning at loop_header and jumping back to loop_header via back_jump.
199  * Stores the locations at which the looping path was added in inserted_path.
200  *
201  * THIS DESTROYS looping_path!!
202  */
204  goto_programt::targett &loop_header,
205  goto_programt::targett &back_jump,
206  goto_programt &looping_path,
207  patht &inserted_path)
208 {
209  goto_programt::targett loop_body=loop_header;
210  ++loop_body;
211 
213  loop_body,
215  loop_body,
217  loop_body->source_location()));
218 
219  program.destructive_insert(loop_body, looping_path);
220 
221  jump = program.insert_before(
222  loop_body, goto_programt::make_goto(back_jump, true_exprt()));
223 
224  for(goto_programt::targett t=loop_header;
225  t!=loop_body;
226  ++t)
227  {
228  inserted_path.push_back(path_nodet(t));
229  }
230 
231  inserted_path.push_back(path_nodet(back_jump));
232 }
233 
235  goto_programt::targett loop_header,
236  goto_programt::targett &loop_end,
237  goto_programt::targett &overflow_loc)
238 {
239  symbolt overflow_sym=utils.fresh_symbol("accelerate::overflow", bool_typet());
240  const exprt &overflow_var=overflow_sym.symbol_expr();
242  natural_loops.loop_map.at(loop_header);
243  overflow_instrumentert instrumenter(program, overflow_var, symbol_table);
244 
245  for(const auto &loop_instruction : loop)
246  {
247  overflow_locs[loop_instruction] = goto_programt::targetst();
248  goto_programt::targetst &added = overflow_locs[loop_instruction];
249 
250  instrumenter.add_overflow_checks(loop_instruction, added);
251  for(const auto &new_instruction : added)
252  loop.insert_instruction(new_instruction);
253  }
254 
256  loop_header,
258  t->swap(*loop_header);
259  loop.insert_instruction(t);
260  overflow_locs[loop_header].push_back(t);
261 
262  overflow_loc = program.insert_after(loop_end, goto_programt::make_skip());
263  overflow_loc->swap(*loop_end);
264  loop.insert_instruction(overflow_loc);
265 
267  loop_end, goto_programt::make_goto(overflow_loc, not_exprt(overflow_var)));
268  t2->swap(*loop_end);
269  overflow_locs[overflow_loc].push_back(t2);
270  loop.insert_instruction(t2);
271 
272  goto_programt::targett tmp=overflow_loc;
273  overflow_loc=loop_end;
274  loop_end=tmp;
275 }
276 
278 {
279  trace_automatont automaton(program);
280 
281  for(subsumed_pathst::iterator it=subsumed.begin();
282  it!=subsumed.end();
283  ++it)
284  {
285  if(!it->subsumed.empty())
286  {
287 #ifdef DEBUG
289  std::cout << "Restricting path:\n";
290  output_path(it->subsumed, program, ns, std::cout);
291 #endif
292 
293  automaton.add_path(it->subsumed);
294  }
295 
296  patht double_accelerator;
297  patht::iterator jt=double_accelerator.begin();
298  double_accelerator.insert(
299  jt, it->accelerator.begin(), it->accelerator.end());
300  double_accelerator.insert(
301  jt, it->accelerator.begin(), it->accelerator.end());
302 
303 #ifdef DEBUG
305  std::cout << "Restricting path:\n";
306  output_path(double_accelerator, program, ns, std::cout);
307 #endif
308  automaton.add_path(double_accelerator);
309  }
310 
311  std::cout << "Building trace automaton...\n";
312 
313  automaton.build();
314  insert_automaton(automaton);
315 }
316 
318 {
319  for(std::set<exprt>::iterator it=accelerator.dirty_vars.begin();
320  it!=accelerator.dirty_vars.end();
321  ++it)
322  {
323  expr_mapt::iterator jt=dirty_vars_map.find(*it);
324  exprt dirty_var;
325 
326  if(jt==dirty_vars_map.end())
327  {
329  symbolt new_sym=utils.fresh_symbol("accelerate::dirty", bool_typet());
330  dirty_var=new_sym.symbol_expr();
331  dirty_vars_map[*it]=dirty_var;
332  }
333  else
334  {
335  dirty_var=jt->second;
336  }
337 
338 #ifdef DEBUG
339  std::cout << "Setting dirty flag " << format(dirty_var) << " for "
340  << format(*it) << '\n';
341 #endif
342 
343  accelerator.pure_accelerator.add(
345  }
346 }
347 
349 {
350  for(expr_mapt::iterator it=dirty_vars_map.begin();
351  it!=dirty_vars_map.end();
352  ++it)
353  {
357  }
358 
360 
362  it!=program.instructions.end();
363  it=next)
364  {
365  next=it;
366  ++next;
367 
368  // If this is an assign to a tracked variable, clear the dirty flag.
369  // Note: this order of insertions means that we assume each of the read
370  // variables is clean _before_ clearing any dirty flags.
371  if(it->is_assign())
372  {
373  const exprt &lhs = it->assign_lhs();
374  expr_mapt::iterator dirty_var=dirty_vars_map.find(lhs);
375 
376  if(dirty_var!=dirty_vars_map.end())
377  {
379  code_assignt(dirty_var->second, false_exprt()));
380  program.insert_before_swap(it, clear_flag);
381  }
382  }
383 
384  // Find which symbols are read, i.e. those appearing in a guard or on
385  // the right hand side of an assignment. Assume each is not dirty.
386  std::set<symbol_exprt> read;
387 
388  if(it->has_condition())
389  find_symbols(it->condition(), read);
390 
391  if(it->is_assign())
392  find_symbols(it->assign_rhs(), read);
393 
394  for(const auto &var : read)
395  {
396  expr_mapt::iterator dirty_var=dirty_vars_map.find(var);
397 
398  if(dirty_var==dirty_vars_map.end())
399  {
400  continue;
401  }
402 
403  goto_programt::instructiont not_dirty =
404  goto_programt::make_assumption(not_exprt(dirty_var->second));
405  program.insert_before_swap(it, not_dirty);
406  }
407  }
408 }
409 
411 {
412  for(std::set<exprt>::iterator it=accelerator.dirty_vars.begin();
413  it!=accelerator.dirty_vars.end();
414  ++it)
415  {
416  if(it->id()==ID_symbol && it->type() == bool_typet())
417  {
418  const irep_idt &id=to_symbol_expr(*it).get_identifier();
419  const symbolt &sym = symbol_table.lookup_ref(id);
420 
421  if(sym.module=="scratch")
422  {
423  continue;
424  }
425  }
426 
427 #ifdef DEBUG
428  std::cout << "Underapproximate variable: " << format(*it) << '\n';
429 #endif
430  return true;
431  }
432 
433  return false;
434 }
435 
436 symbolt acceleratet::make_symbol(std::string name, typet type)
437 {
438  symbolt ret{name, std::move(type), irep_idt{}};
439  ret.module="accelerate";
440  ret.base_name=name;
441  ret.pretty_name=name;
442 
443  symbol_table.add(ret);
444 
445  return ret;
446 }
447 
449 {
450 #if 0
452  code_declt code(sym);
453 
454  decl->make_decl();
455  decl->code=code;
456 #endif
457 }
458 
460 {
461  decl(sym, t);
462 
465 }
466 
468 {
469  symbolt state_sym=make_symbol("trace_automaton::state",
471  symbolt next_state_sym=make_symbol("trace_automaton::next_state",
473  symbol_exprt state=state_sym.symbol_expr();
474  symbol_exprt next_state=next_state_sym.symbol_expr();
475 
476  trace_automatont::sym_mapt transitions;
477  state_sett accept_states;
478 
479  automaton.get_transitions(transitions);
480  automaton.accept_states(accept_states);
481 
482  std::cout
483  << "Inserting trace automaton with "
484  << automaton.num_states() << " states, "
485  << accept_states.size() << " accepting states and "
486  << transitions.size() << " transitions\n";
487 
488  // Declare the variables we'll use to encode the state machine.
490  decl(state, t, from_integer(automaton.init_state(), state.type()));
491  decl(next_state, t);
492 
493  // Now for each program location that appears as a symbol in the
494  // trace automaton, add the appropriate code to drive the state
495  // machine.
496  for(const auto &sym : automaton.alphabet)
497  {
498  scratch_programt state_machine{
500  trace_automatont::sym_range_pairt p=transitions.equal_range(sym);
501 
502  build_state_machine(p.first, p.second, accept_states, state, next_state,
503  state_machine);
504 
505  program.insert_before_swap(sym, state_machine);
506  }
507 }
508 
510  trace_automatont::sym_mapt::iterator begin,
511  trace_automatont::sym_mapt::iterator end,
512  state_sett &accept_states,
513  symbol_exprt state,
514  symbol_exprt next_state,
515  scratch_programt &state_machine)
516 {
517  std::map<unsigned int, unsigned int> successor_counts;
518  unsigned int max_count=0;
519  unsigned int likely_next=0;
520 
521  // Optimisation: find the most common successor state and initialise
522  // next_state to that value. This reduces the size of the state machine
523  // driver substantially.
524  for(trace_automatont::sym_mapt::iterator p=begin; p!=end; ++p)
525  {
526  trace_automatont::state_pairt state_pair=p->second;
527  unsigned int to=state_pair.second;
528  unsigned int count=0;
529 
530  if(successor_counts.find(to)==successor_counts.end())
531  {
532  count=1;
533  }
534  else
535  {
536  count=successor_counts[to] + 1;
537  }
538 
539  successor_counts[to]=count;
540 
541  if(count > max_count)
542  {
543  max_count=count;
544  likely_next=to;
545  }
546  }
547 
548  // Optimisation: if there is only one possible successor state, just
549  // jump straight to it instead of driving the whole machine.
550  if(successor_counts.size()==1)
551  {
552  if(accept_states.find(likely_next)!=accept_states.end())
553  {
554  // It's an accept state. Just assume(false).
555  state_machine.assume(false_exprt());
556  }
557  else
558  {
559  state_machine.assign(state,
560  from_integer(likely_next, next_state.type()));
561  }
562 
563  return;
564  }
565 
566  state_machine.assign(next_state,
567  from_integer(likely_next, next_state.type()));
568 
569  for(trace_automatont::sym_mapt::iterator p=begin; p!=end; ++p)
570  {
571  trace_automatont::state_pairt state_pair=p->second;
572  unsigned int from=state_pair.first;
573  unsigned int to=state_pair.second;
574 
575  if(to==likely_next)
576  {
577  continue;
578  }
579 
580  // We're encoding the transition
581  //
582  // from -loc-> to
583  //
584  // which we encode by inserting:
585  //
586  // next_state=(state==from) ? to : next_state;
587  //
588  // just before loc.
589  equal_exprt guard(state, from_integer(from, state.type()));
590  if_exprt rhs(guard, from_integer(to, next_state.type()), next_state);
591  state_machine.assign(next_state, rhs);
592  }
593 
594  // Update the state and assume(false) if we've hit an accept state.
595  state_machine.assign(state, next_state);
596 
597  for(state_sett::iterator it=accept_states.begin();
598  it!=accept_states.end();
599  ++it)
600  {
601  state_machine.assume(
602  not_exprt(equal_exprt(state, from_integer(*it, state.type()))));
603  }
604 }
605 
607 {
608  int num_accelerated=0;
609 
610  for(natural_loops_mutablet::loop_mapt::iterator it =
611  natural_loops.loop_map.begin();
612  it!=natural_loops.loop_map.end();
613  ++it)
614  {
615  goto_programt::targett t=it->first;
616  num_accelerated += accelerate_loop(t);
617  }
618 
619  program.update();
620 
621  if(num_accelerated > 0)
622  {
623  std::cout << "Engaging crush mode...\n";
624 
625  restrict_traces();
626  // add_dirty_checks();
627  program.update();
628 
629  std::cout << "Crush mode engaged.\n";
630  }
631 
632  return num_accelerated;
633 }
634 
636  goto_modelt &goto_model,
637  message_handlert &message_handler,
638  bool use_z3,
639  guard_managert &guard_manager)
640 {
641  for(auto &gf_entry : goto_model.goto_functions.function_map)
642  {
643  std::cout << "Accelerating function " << gf_entry.first << '\n';
644  acceleratet accelerate(
645  gf_entry.second.body, goto_model, message_handler, use_z3, guard_manager);
646 
647  int num_accelerated=accelerate.accelerate_loops();
648 
649  if(num_accelerated > 0)
650  {
651  std::cout << "Added " << num_accelerated
652  << " accelerator(s)\n";
653  }
654  }
655 }
void accelerate_functions(goto_modelt &goto_model, message_handlert &message_handler, bool use_z3, guard_managert &guard_manager)
Definition: accelerate.cpp:635
Loop Acceleration.
Loop Acceleration.
constant_exprt from_integer(const mp_integer &int_value, const typet &type)
static exprt guard(const exprt::operandst &guards, exprt cond)
void add_dirty_checks()
Definition: accelerate.cpp:348
void insert_accelerator(goto_programt::targett &loop_header, goto_programt::targett &back_jump, path_acceleratort &accelerator, subsumed_patht &subsumed_path)
Definition: accelerate.cpp:177
void insert_automaton(trace_automatont &automaton)
Definition: accelerate.cpp:467
acceleration_utilst utils
Definition: accelerate.h:118
goto_programt & program
Definition: accelerate.h:111
symbolt make_symbol(std::string name, typet type)
Definition: accelerate.cpp:436
natural_loops_mutablet natural_loops
Definition: accelerate.h:116
message_handlert & message_handler
Definition: accelerate.h:57
void decl(symbol_exprt &sym, goto_programt::targett t)
Definition: accelerate.cpp:448
symbol_tablet & symbol_table
Definition: accelerate.h:113
expr_mapt dirty_vars_map
Definition: accelerate.h:127
subsumed_pathst subsumed
Definition: accelerate.h:117
int accelerate_loops()
Definition: accelerate.cpp:606
bool contains_nested_loops(goto_programt::targett &loop_header)
Definition: accelerate.cpp:58
void build_state_machine(trace_automatont::sym_mapt::iterator p, trace_automatont::sym_mapt::iterator end, state_sett &accept_states, symbol_exprt state, symbol_exprt next_state, scratch_programt &state_machine)
Definition: accelerate.cpp:509
void make_overflow_loc(goto_programt::targett loop_header, goto_programt::targett &loop_end, goto_programt::targett &overflow_loc)
Definition: accelerate.cpp:234
void restrict_traces()
Definition: accelerate.cpp:277
overflow_mapt overflow_locs
Definition: accelerate.h:125
namespacet ns
Definition: accelerate.h:115
void set_dirty_vars(path_acceleratort &accelerator)
Definition: accelerate.cpp:317
goto_functionst & goto_functions
Definition: accelerate.h:112
bool is_underapproximate(path_acceleratort &accelerator)
Definition: accelerate.cpp:410
static const int accelerate_limit
Definition: accelerate.h:54
goto_programt::targett find_back_jump(goto_programt::targett loop_header)
Definition: accelerate.cpp:37
guard_managert & guard_manager
Definition: accelerate.h:114
void insert_looping_path(goto_programt::targett &loop_header, goto_programt::targett &back_jump, goto_programt &looping_path, patht &inserted_path)
Definition: accelerate.cpp:203
int accelerate_loop(goto_programt::targett &loop_header)
Definition: accelerate.cpp:84
symbolt fresh_symbol(std::string base, typet type)
The Boolean type.
Definition: std_types.h:36
A goto_instruction_codet representing an assignment in the program.
A goto_instruction_codet representing the declaration of a local variable.
dstringt has one field, an unsigned integer no which is an index into a static table of strings.
Definition: dstring.h:38
bool accelerate(path_acceleratort &accelerator)
Equality.
Definition: std_expr.h:1361
Base class for all expressions.
Definition: expr.h:56
const source_locationt & source_location() const
Definition: expr.h:231
typet & type()
Return the type of the expression.
Definition: expr.h:84
The Boolean constant false.
Definition: std_expr.h:3064
function_mapt function_map
goto_functionst goto_functions
GOTO functions.
Definition: goto_model.h:34
This class represents an instruction in the GOTO intermediate representation.
Definition: goto_program.h:181
A generic container class for the GOTO intermediate representation of one function.
Definition: goto_program.h:73
static instructiont make_assumption(const exprt &g, const source_locationt &l=source_locationt::nil())
Definition: goto_program.h:945
instructionst instructions
The list of instructions in the goto program.
Definition: goto_program.h:622
void update()
Update all indices.
void insert_before_swap(targett target)
Insertion that preserves jumps to "target".
Definition: goto_program.h:643
void destructive_insert(const_targett target, goto_programt &p)
Inserts the given program p before target.
Definition: goto_program.h:730
instructionst::iterator targett
Definition: goto_program.h:614
static instructiont make_assignment(const code_assignt &_code, const source_locationt &l=source_locationt::nil())
Create an assignment instruction.
static instructiont make_skip(const source_locationt &l=source_locationt::nil())
Definition: goto_program.h:891
targett insert_after(const_targett target)
Insertion after the instruction pointed-to by the given instruction iterator target.
Definition: goto_program.h:708
targett add(instructiont &&instruction)
Adds a given instruction at the end.
Definition: goto_program.h:739
static instructiont make_goto(targett _target, const source_locationt &l=source_locationt::nil())
targett insert_before(const_targett target)
Insertion before the instruction pointed-to by the given instruction iterator target.
Definition: goto_program.h:692
std::list< targett > targetst
Definition: goto_program.h:616
The trinary if-then-else operator.
Definition: std_expr.h:2370
loop_mapt loop_map
Definition: loop_analysis.h:88
bool is_loop_header(const T instruction) const
Returns true if instruction is the header of any loop.
Definition: loop_analysis.h:93
A loop, specified as a set of instructions.
Definition: loop_analysis.h:24
bool insert_instruction(const T instruction)
Adds instruction to this loop.
Definition: loop_analysis.h:74
A namespacet is essentially one or two symbol tables bound together, to allow for symbol lookups in t...
Definition: namespace.h:94
Boolean negation.
Definition: std_expr.h:2327
goto_programt overflow_path
Definition: accelerator.h:64
std::set< exprt > dirty_vars
Definition: accelerator.h:66
goto_programt pure_accelerator
Definition: accelerator.h:63
targett assume(const exprt &guard)
targett assign(const exprt &lhs, const exprt &rhs)
A side_effect_exprt that returns a non-deterministically chosen value.
Definition: std_code.h:1520
patht residue
Definition: subsumed.h:30
patht accelerator
Definition: subsumed.h:29
Expression to hold a symbol (variable)
Definition: std_expr.h:131
const irep_idt & get_identifier() const
Definition: std_expr.h:160
const symbolt & lookup_ref(const irep_idt &name) const
Find a symbol in the symbol table for read-only access.
bool add(const symbolt &symbol)
Add a new symbol to the symbol table.
Symbol table entry.
Definition: symbol.h:28
irep_idt module
Name of module the symbol belongs to.
Definition: symbol.h:43
class symbol_exprt symbol_expr() const
Produces a symbol_exprt for a symbol.
Definition: symbol.cpp:121
void get_transitions(sym_mapt &transitions)
void accept_states(state_sett &states)
std::pair< sym_mapt::iterator, sym_mapt::iterator > sym_range_pairt
std::multimap< goto_programt::targett, state_pairt, goto_programt::target_less_than > sym_mapt
std::pair< statet, statet > state_pairt
unsigned num_states()
void add_path(patht &path)
The Boolean constant true.
Definition: std_expr.h:3055
The type of an expression, extends irept.
Definition: type.h:29
const source_locationt & source_location() const
Definition: type.h:72
static bool find_symbols(symbol_kindt, const typet &, std::function< bool(const symbol_exprt &)>, std::unordered_set< irep_idt > &bindings)
static format_containert< T > format(const T &o)
Definition: format.h:37
Goto Programs with Functions.
@ SKIP
Definition: goto_program.h:38
int __CPROVER_ID java::java io InputStream read
Definition: java.io.c:5
Compute natural loops in a goto_function.
Loop Acceleration.
void output_path(const patht &path, std::ostream &str)
Definition: path.cpp:16
Loop Acceleration.
std::list< patht > pathst
Definition: path.h:45
std::list< path_nodet > patht
Definition: path.h:44
Loop Acceleration.
API to expression classes.
const symbol_exprt & to_symbol_expr(const exprt &expr)
Cast an exprt to a symbol_exprt.
Definition: std_expr.h:272
This is unused by this implementation of guards, but can be used by other implementations of the same...
Definition: guard_expr.h:20
std::set< statet > state_sett
unsignedbv_typet unsigned_poly_type()
Definition: util.cpp:25
Loop Acceleration.